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Abstract
Higher-order derivatives have critical applications in scientific com-
puting andmachine learning, ranging from neural ODEs to Hessian-
based optimizers. Although existing approaches to compute these
derivatives use automatic differentiation (AD), the generated code
to compute higher-order derivatives is usually suboptimal, leaving
room for optimizations on the table.

We show how compiler optimizations can improve the perfor-
mance of higher-order AD in tensor programs. Our key insight is
that AD-generated derivative code often contains exploitable high-
level structure, such as common sub-expressions and symmetric
mixed derivatives. To leverage these structures, we implement com-
piler passes in the MLIR StableHLO intermediate representation,
including constant propagation and other tensor-specific rewrites.
Preliminary benchmarks on second-order Laplacian computations
in deep neural networks show speedups of upto 1.3×.

These findings suggest that compiler-level optimizations offer
a promising path toward making higher-order AD more practical
and efficient, particularly for large-scale applications that rely on
complex derivative computations.
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1 Introduction
Automatic differentiation (AD) has emerged as a powerful and
increasingly popular tool for computing exact derivatives in dif-
ferential programming. Although most widely used AD frame-
works [2, 10] are heavily optimized for first-order derivatives (ow-
ing to the dominance of backpropagation in machine learning),
second or higher-order derivatives are steadily gaining traction.
Examples include Hessian-based ML optimization [3] and neural
ordinary differential equations (ODEs) [1].

However, our preliminary findings indicate that simply relying
on standard AD frameworks or existing higher-order AD solutions
in these applications often leads to suboptimal performance. We
argue that well-tuned compiler optimizations and scheduling tech-
niques can bridge this performance gap.

2 Current Approaches and Issues
Existingmethods for computing higher-order derivatives can broadly
be categorized into two approaches:

Repeated Composition of First-Order Derivatives. A straight-
forward strategy is to repeatedly apply first-order AD operators
until the desired order is reached. This approach is appealing be-
cause it reuses mature AD frameworks like PyTorch [10], JAX [2],
and Enzyme [7–9], all of which support source-to-source transfor-
mations. However, there are some caveats:

• Symmetry in mixed derivatives: First-order operators
cannot reveal exploit structure in higher-order derivatives,
such as the symmetry of partial derivatives. Consequently,
naively expanding repeated derivatives can lead to an ex-
ponential blow-up in terms. For example, for a function
𝑓 : R𝑛 → R, computing all second-order partial derivatives
∀𝑖, 𝑗 ∈ {1, 2, 3 · · · , 𝑛}, 𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
results in 𝑛2 evaluations, even

though only 𝑛 (𝑛+1)
2 of them are unique due to symmetry.

• Sparse computations: In many practical scenarios, only
a small subset of mixed derivatives are actually needed for
subsequent computations. For instance, if a downstream
computation only needs the principal diagonal of the Hes-
sian, we can skip computing all partial derivatives and focus
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Table 1: Time for different methods to compute the Laplacian of a 64 layer MLP. All evaluations are performed on a CPU build
of jax. Reported time is averaged over 10 evaluations, and is in seconds. The minimum time is highlighted for every row.

hidden layer size Our optimizations trace(jax.hessian) jax.jvp(jax.grad) jax.jet

256 disabled 3.687 3.619 2.364
enabled 3.196 3.104 1.872

512 disabled 13.823 14.031 12.580
enabled 13.743 13.894 9.759

384 disabled 7.155 7.507 6.280
enabled 4.217 4.559 3.049

128 disabled 0.761 0.763 0.827
enabled 0.771 0.765 0.901

Geomean speedup 1.181 1.179 1.324

solely on 𝜕2 𝑓
𝜕𝑥2

𝑖

, and map this to a sparse tensor operation,
saving on storage and compute.

Taylor AD. An alternative strategy is to compute higher-order
derivatives via a Taylor series expansion, as described in Chapter
13 of Griewank and Walther [4]. This method is implemented for
forward-mode AD in the jax.jet module [1], which inherently
handles symmetries in mixed partials and thus mitigates some of
the exponential blow-up issues noted in repeated composition.

However, all Taylor AD implementations rely on operator over-
loading, resulting in large operator call overheads at runtime. For
example, in jax.jet, we observed that transcendental operators
like lgamma were not folded into constants by XLA during compile
time.

JAX code StableHLO XLA

Our compiler passes

Figure 1: Compilation pipeline showing where our compiler
passes are inserted, before dispatching code to XLA[11]

3 Leveraging Compiler Optimizations
We ask ourselves the following research question:

How do we effectively optimize code which requires the use of
higher-order derivatives?

We believe that the answer to this question lies in designing or
adapting compiler techniques can exploit the high-level structure
exposed by derivative operators. Specifically:

Constant Propagation. Constant Propagation can help reduce
runtime overheads in operator overloading. Especially in the case
of lgamma (represented in StableHLO as chlo.lgamma), we have
the following transformation at compile time:
// Before constant propogation
%cst = stablehlo.constant dense<1.00e+01> : tensor<f32>
%0 = chlo.lgamma %cst : tensor<f32> -> tensor<f32>

// After constant propogation
%0 = stablehlo.constant dense<4.7684E-7> : tensor<f32>

Common Subexpression Elimination(CSE). CSE, after aug-
menting it with the information about mixed partial derivatives,
can simplify the CFG corresponding to the output derivative.

Kernel Rewriting. We can leverage the sparsity of the deriva-
tive computation by propagating them into future operations, and
rewrite them into more storage or compute efficient operators. For
example, since we know that the Hessian output 𝐻 is symmetric,
we can replace all 𝑔𝑒𝑚𝑚(𝐻, 𝐵) calls with 𝑠𝑦𝑚𝑚(𝐻, 𝐵) where 𝑠𝑦𝑚𝑚

is a matmul routine specialized for symmetric matrices. This can
also be done for sparse computations.

Tensor Rewrites. Tensor rewrites have emerged as a very im-
portant method to optimize tensor programs.[5]. These rewrites
are particularly effective for higher-order derivatives where com-
plex mathematical expressions and repeated tensor operations are
common.

4 Implementation in MLIR and JAX
We have a prototype implementation in JAX and MLIR[6]. Figure 1
describes the compilation flow we use to optimize a general jax pro-
gram. Currently, we run all our optimization passes after generating
the derivative code.

For our preliminary results, we compute the Laplacian of a Multi
Layer Perceptron defined in jax, and compare runtimes on CPU.
The results are shown for various hidden layer widths, and 3 differ-
ent ways of computation in Table 1.

5 Conclusions and Future Work
Our preliminary results suggest that compiler optimizations can
significantly improve higher-order AD performance in tensor pro-
grams. The observed speed-ups indicate that a lot of performance
is left on the table. In the future, we plan to add support for the rest
of the compiler passes like Kernel Rewriting and CSE. In order to
effectively add support for the same, we need to propagate attribute
information across the derivative boundary.
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