
Compiler Optimizations for Higher-Order Automatic
Differentiation

Vimarsh Sathia
vsathia2@illinois.edu

University of Illinois Urbana
Champaign

Urbana, Illinois, USA

Siyuan Brant Qian
siyuanq4@illinois.edu

University of Illinois Urbana
Champaign

Urbana, Illinois, USA

Jan Hückelheim
jhueckelheim@anl.gov

Argonne National Laboratory
Lemont, Illinois, USA

Paul Hovland
hovland@anl.gov

Argonne National Laboratory
Lemont, Illinois, USA

William S. Moses
wsmoses@illinois.edu

University of Illinois Urbana
Champaign

Urbana, Illinois, USA

Abstract
Higher-order derivatives have critical applications in scientific com-
puting andmachine learning, ranging from neural ODEs to Hessian-
based optimizers. Although existing approaches to compute these
derivatives use automatic differentiation (AD), the generated code
to compute higher-order derivatives is usually suboptimal, leaving
room for optimizations on the table.

We show how compiler optimizations can improve the perfor-
mance of higher-order AD in tensor programs. Our key insight is
that AD-generated derivative code often contains exploitable high-
level structure, such as common sub-expressions and symmetric
mixed derivatives. To leverage these structures, we implement com-
piler passes in the MLIR StableHLO intermediate representation,
including constant propagation and other tensor-specific rewrites.
Preliminary benchmarks on second-order Laplacian computations
in deep neural networks show speedups of upto 1.3×.

These findings suggest that compiler-level optimizations offer
a promising path toward making higher-order AD more practical
and efficient, particularly for large-scale applications that rely on
complex derivative computations.

Keywords
automatic differentiation, compiler optimizations, tensor programs,
scientific computing

ACM Reference Format:
Vimarsh Sathia, Siyuan Brant Qian, JanHückelheim, Paul Hovland, andWilliam
S. Moses. 2025. Compiler Optimizations for Higher-Order Automatic Differ-
entiation. In Proceedings of Workshop on Differentiable Parallel Programming
(PPoPP ’25). ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’25, Las Vegas, NV
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Automatic differentiation (AD) has emerged as a powerful and
increasingly popular tool for computing exact derivatives in dif-
ferential programming. Although most widely used AD frame-
works [2, 10] are heavily optimized for first-order derivatives (ow-
ing to the dominance of backpropagation in machine learning),
second or higher-order derivatives are steadily gaining traction.
Examples include Hessian-based ML optimization [3] and neural
ordinary differential equations (ODEs) [1].

However, our preliminary findings indicate that simply relying
on standard AD frameworks or existing higher-order AD solutions
in these applications often leads to suboptimal performance. We
argue that well-tuned compiler optimizations and scheduling tech-
niques can bridge this performance gap.

2 Current Approaches and Issues
Existingmethods for computing higher-order derivatives can broadly
be categorized into two approaches:

Repeated Composition of First-Order Derivatives. A straight-
forward strategy is to repeatedly apply first-order AD operators
until the desired order is reached. This approach is appealing be-
cause it reuses mature AD frameworks like PyTorch [10], JAX [2],
and Enzyme [7–9], all of which support source-to-source transfor-
mations. However, there are some caveats:

• Symmetry in mixed derivatives: First-order operators
cannot reveal exploit structure in higher-order derivatives,
such as the symmetry of partial derivatives. Consequently,
naively expanding repeated derivatives can lead to an ex-
ponential blow-up in terms. For example, for a function
𝑓 : R𝑛 → R, computing all second-order partial derivatives
∀𝑖, 𝑗 ∈ {1, 2, 3 · · · , 𝑛}, 𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
results in 𝑛2 evaluations, even

though only 𝑛 (𝑛+1)
2 of them are unique due to symmetry.

• Sparse computations: In many practical scenarios, only
a small subset of mixed derivatives are actually needed for
subsequent computations. For instance, if a downstream
computation only needs the principal diagonal of the Hes-
sian, we can skip computing all partial derivatives and focus

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


PPoPP ’25, March 01–05, 2025, Las Vegas, NV Sathia et al.

Table 1: Time for different methods to compute the Laplacian of a 64 layer MLP. All evaluations are performed on a CPU build
of jax. Reported time is averaged over 10 evaluations, and is in seconds. The minimum time is highlighted for every row.

hidden layer size Our optimizations trace(jax.hessian) jax.jvp(jax.grad) jax.jet

256 disabled 3.687 3.619 2.364
enabled 3.196 3.104 1.872

512 disabled 13.823 14.031 12.580
enabled 13.743 13.894 9.759

384 disabled 7.155 7.507 6.280
enabled 4.217 4.559 3.049

128 disabled 0.761 0.763 0.827
enabled 0.771 0.765 0.901

Geomean speedup 1.181 1.179 1.324

solely on 𝜕2 𝑓
𝜕𝑥2

𝑖

, and map this to a sparse tensor operation,
saving on storage and compute.

Taylor AD. An alternative strategy is to compute higher-order
derivatives via a Taylor series expansion, as described in Chapter
13 of Griewank and Walther [4]. This method is implemented for
forward-mode AD in the jax.jet module [1], which inherently
handles symmetries in mixed partials and thus mitigates some of
the exponential blow-up issues noted in repeated composition.

However, all Taylor AD implementations rely on operator over-
loading, resulting in large operator call overheads at runtime. For
example, in jax.jet, we observed that transcendental operators
like lgamma were not folded into constants by XLA during compile
time.

JAX code StableHLO XLA

Our compiler passes

Figure 1: Compilation pipeline showing where our compiler
passes are inserted, before dispatching code to XLA[11]

3 Leveraging Compiler Optimizations
We ask ourselves the following research question:

How do we effectively optimize code which requires the use of
higher-order derivatives?

We believe that the answer to this question lies in designing or
adapting compiler techniques can exploit the high-level structure
exposed by derivative operators. Specifically:

Constant Propagation. Constant Propagation can help reduce
runtime overheads in operator overloading. Especially in the case
of lgamma (represented in StableHLO as chlo.lgamma), we have
the following transformation at compile time:
// Before constant propogation
%cst = stablehlo.constant dense<1.00e+01> : tensor<f32>
%0 = chlo.lgamma %cst : tensor<f32> -> tensor<f32>

// After constant propogation
%0 = stablehlo.constant dense<4.7684E-7> : tensor<f32>

Common Subexpression Elimination(CSE). CSE, after aug-
menting it with the information about mixed partial derivatives,
can simplify the CFG corresponding to the output derivative.

Kernel Rewriting. We can leverage the sparsity of the deriva-
tive computation by propagating them into future operations, and
rewrite them into more storage or compute efficient operators. For
example, since we know that the Hessian output 𝐻 is symmetric,
we can replace all 𝑔𝑒𝑚𝑚(𝐻, 𝐵) calls with 𝑠𝑦𝑚𝑚(𝐻, 𝐵) where 𝑠𝑦𝑚𝑚

is a matmul routine specialized for symmetric matrices. This can
also be done for sparse computations.

Tensor Rewrites. Tensor rewrites have emerged as a very im-
portant method to optimize tensor programs.[5]. These rewrites
are particularly effective for higher-order derivatives where com-
plex mathematical expressions and repeated tensor operations are
common.

4 Implementation in MLIR and JAX
We have a prototype implementation in JAX and MLIR[6]. Figure 1
describes the compilation flow we use to optimize a general jax pro-
gram. Currently, we run all our optimization passes after generating
the derivative code.

For our preliminary results, we compute the Laplacian of a Multi
Layer Perceptron defined in jax, and compare runtimes on CPU.
The results are shown for various hidden layer widths, and 3 differ-
ent ways of computation in Table 1.

5 Conclusions and Future Work
Our preliminary results suggest that compiler optimizations can
significantly improve higher-order AD performance in tensor pro-
grams. The observed speed-ups indicate that a lot of performance
is left on the table. In the future, we plan to add support for the rest
of the compiler passes like Kernel Rewriting and CSE. In order to
effectively add support for the same, we need to propagate attribute
information across the derivative boundary.



Compiler Optimizations for Higher-Order Automatic Differentiation PPoPP ’25, March 01–05, 2025, Las Vegas, NV

References
[1] Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. 2019. Taylor-

Mode Automatic Differentiation for Higher-Order Derivatives in JAX. In Program
Transformations for MLWorkshop at NeurIPS 2019. https://openreview.net/forum?
id=SkxEF3FNPH

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/jax-ml/jax

[3] Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. 2024. How
to compute Hessian-vector products?. In The Third Blogpost Track at ICLR 2024.
https://openreview.net/forum?id=rTgjQtGP3O

[4] Andreas Griewank and AndreaWalther. 2008. Evaluating Derivatives (second ed.).
Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898717761
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9780898717761

[5] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic
generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association
for Computing Machinery, New York, NY, USA, 47–62. doi:10.1145/3341301.
3359630

[6] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In 2021 International Symposium on Code Generation and Optimiza-
tion (CGO). 2–14. doi:10.1109/CGO51591.2021.9370308

[7] William Moses and Valentin Churavy. 2020. Instead of Rewriting Foreign
Code for Machine Learning, Automatically Synthesize Fast Gradients. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Asso-
ciates, Inc., 12472–12485. https://proceedings.neurips.cc/paper/2020/file/
9332c513ef44b682e9347822c2e457ac-Paper.pdf

[8] William S. Moses, Valentin Churavy, Ludger Paehler, Jan Hückelheim, Sri Hari Kr-
ishna Narayanan, Michel Schanen, and Johannes Doerfert. 2021. Reverse-Mode
Automatic Differentiation and Optimization of GPU Kernels via Enzyme. In Pro-
ceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing
Machinery, New York, NY, USA, Article 61, 16 pages. doi:10.1145/3458817.3476165

[9] William S. Moses, Sri Hari Krishna Narayanan, Ludger Paehler, Valentin Chu-
ravy, Michel Schanen, Jan Hückelheim, Johannes Doerfert, and Paul Hovland.
2022. Scalable Automatic Differentiation of Multiple Parallel Paradigms through
Compiler Augmentation. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (Dallas, Texas) (SC ’22).
IEEE Press, Article 60, 18 pages.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[11] Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Performance.

https://openreview.net/forum?id=SkxEF3FNPH
https://openreview.net/forum?id=SkxEF3FNPH
http://github.com/jax-ml/jax
https://openreview.net/forum?id=rTgjQtGP3O
https://doi.org/10.1137/1.9780898717761
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898717761
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1109/CGO51591.2021.9370308
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://doi.org/10.1145/3458817.3476165
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Abstract
	1 Introduction
	2 Current Approaches and Issues
	3 Leveraging Compiler Optimizations
	4 Implementation in MLIR and JAX
	5 Conclusions and Future Work
	References

