
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3731599.3767363
.

.

RESEARCH-ARTICLE

Data Race Detection through Vibe Translation

JAN HUECKELHEIM, Argonne National Laboratory, Lemont, IL, United States
.

VIMARSH SATHIA, University of Illinois Urbana-Champaign, Urbana, IL, United States
.

SIYUAN BRANT QIAN, University of Illinois Urbana-Champaign, Urbana, IL, United States
.

.

.

Open Access Support provided by:
.

University of Illinois Urbana-Champaign
.

Argonne National Laboratory
.

PDF Download
3731599.3767363.pdf
30 December 2025
Total Citations: 0
Total Downloads: 1236
.

.

Published: 16 November 2025
.

.

Citation in BibTeX format
.

.

SC Workshops '25: Workshops of the
International Conference for High
Performance Computing, Networking,
Storage and Analysis
November 16 - 21, 2025
MO, St Louis, USA
.

.

Conference Sponsors:
SIGHPC

SC Workshops '25: Proceedings of the SC '25 Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis (November 2025)
hps://doi.org/10.1145/3731599.3767363

ISBN: 9798400718717

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3731599.3767363
https://dl.acm.org/doi/10.1145/3731599.3767363
https://dl.acm.org/doi/10.1145/contrib-99660999202
https://dl.acm.org/doi/10.1145/institution-60028609
https://dl.acm.org/doi/10.1145/contrib-99661755021
https://dl.acm.org/doi/10.1145/institution-60000745
https://dl.acm.org/doi/10.1145/contrib-99661756142
https://dl.acm.org/doi/10.1145/institution-60000745
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60000745
https://dl.acm.org/doi/10.1145/institution-60028609
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3731599.3767363&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/sc
https://dl.acm.org/conference/sc
https://dl.acm.org/conference/sc
https://dl.acm.org/conference/sc
https://dl.acm.org/sig/sighpc
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3731599.3767363&domain=pdf&date_stamp=2025-11-15


Data Race Detection through Vibe Translation
Jan Hueckelheim

Argonne National Laboratory
Lemont, IL, USA

jhueckelheim@anl.gov

Vimarsh Sathia
University of Illinois at
Urbana-Champaign
Champaign, USA

vsathia2@illinois.edu

Siyuan Brant Qian
University of Illinois at
Urbana-Champaign
Champaign, USA

siyuanq4@illinois.edu

Abstract
We propose a data race detection approach for code written in a
source programming language, by means of AI-agent translation to
a target language, followed by conventional tool-based detection in
the target language. We evaluate this translate-then-check approach
by translating the C/Fortran+OpenMP programs in DataRaceBench
to the Go programming language, and using the Go data race detec-
tor to check for races. The translation is controlled through natural
language prompts, similar to approaches popularized as vibe coding.
Translate-then-check achieves 92.8% accuracy and 9 false negatives
for the C programs in DataRaceBench, compared to 89.9% accuracy
and 17 false negatives for Clang with ThreadSanitizer and Archer
applied to the original C programs. We discuss the approach and its
overall accuracy, and show examples where translate-then-check
leads to false negatives or positives due to limitations of the Go
data race checker or, in some cases, limitations of the translation.

CCS Concepts
• Software and its engineering → Parallel programming lan-
guages; Formal software verification; Software testing and
debugging.
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1 Introduction
Data races— defects caused by unsafe concurrent access to the
same memory address by multiple threads—are among the most
challenging software bugs to identify and fix, due to their inher-
ently non-deterministic nature. Effective data race detection tools
can be essential for developing and maintaining parallel software,
which is increasingly important in the presence of more diverse
hardware platforms, including CPUs, GPUs, and AI accelerators, for
which a variety of programming environments and programming
frameworks poses programming and portability challenges.
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ACM ISBN 979-8-4007-1871-7/25/11
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However, the tool landscape for data race detection varies be-
tween different programming languages and different parallelism
dialects. To bridge this language gap, we propose an approach that
leverages AI-driven program translation, with the goal of extending
the applicability of mature data race detection tools in one language
to programs written in another language. Unlike approaches that
rely purely on large language model (LLM)-based race detection,
which requires complex reasoning that current LLMs struggle with,
we merely use LLMs for language translation, a task at which they
perform reasonably well [19]. This is then combined with the use
of conventional data race detection tools, hopefully leading to more
rigorous and explainable results than a pure AI approach. We refer
to this combination of LLM-based translation and conventional
race detection as translate-then-check.

In the context of dynamic data race detection, where a small
ratio of false positives or false negatives can be acceptable, our
experiments show that the uncertainty introduced by LLM-based
translation can be small enough to result in data race detection rates
that are competitive with state of the art tools applied directly to
their native language. On the other hand, our experiments also show
that LLM-based translation does introduce new race conditions at
a rate that may be unacceptable outside of a translate-then-check
approach, especially if the translated programs are to be used in
production environments. For example, even a powerful state of the
art model such as Claude 4 Sonnet sometimes fails on basic tasks
such as parallelizing a for loop, while most of the time performing
well even for much more complicated tasks. Our results thus also
act as a temperature check on the state of LLM-based translation
for parallel codes, complementary to other work reporting success
using LLMs for translation tasks in applications [10].

We believe the contributions of this paper to be:
• Anovel translate-then-check approach, which is to our knowl-
edge the first time that programs are translated by an LLM
using natural language prompts, with the sole intent to check
for data races in the original source code.

• Evaluation of LLM-based translation from C or Fortran with
OpenMP, to the Go language, for the programs contained in
DataRaceBench.

• A Go version of DataRaceBench – albeit with inaccuracies
introduced by the translation, as described in this paper –
available on GitHub1.

• Improvements to DataRaceBench Fortran programs, due to
defects that were found during the translation and while
reproducing results.

• A point of comparison for the relative quality of data race
detectors across C/OpenMP and Go.

1https://github.com/jhueckelheim/dataracebench-vibe-check
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Some of the key findings include:
• Translate-then-check for DataRaceBench[13, 14] C/C++ pro-
grams translated to Go outperforms the current version of
Clang/ThreadSanitizer with Archer [1], itself a mature tool
chain.

• For DataRaceBench Fortran programs, both our translate-
then-check approach and ThreadSanitizer+Archer perform
worse than they do for the C/C++ programs, but our ap-
proach still outperforms the alternative.

• The quality of LLM-based translations is crucial for good de-
tection rates. In particular, all false positives in our approach
are caused by mistranslations that introduced actual races,
and less powerful language models have significantly higher
failure rates.

A significant limitation of our work, is the reliance on closed,
commercial AI models – specifically Claude 4 Sonnet, accessed
through a paid plan with Cursor – which means that our results
represent a snapshot in time and may not be reproducible as mod-
els evolve. Additionally, DataRaceBench’s prominence may have
influenced the AI agent’s translation decisions, as the benchmark
was almost certainly included in the training data, and the nature of
each file (race or no race) is also clearly indicated as part of the file
name and in comments within the files. While the latter part could
have been fixed by removing comments or scrambling file names,
the well-known nature of the DataRaceBench programs would still
potentially bias studies based on this benchmark, and future work
should investigate this approach in a real-world setting where the
investigated codes have unknown data race status.

While we acknowledge that users might still have good rea-
sons to prefer native tools when available instead of translate-then-
check, we postulate that our experiments nevertheless indicate
that translate-then-check can allow the use of mature race detec-
tion tools across languages, with an accuracy that is high enough
to be useful. This could be particularly interesting for less com-
monly used or novel source languages or parallelism frameworks,
for which mature tools such as Archer, Thread Sanitizer, or the Go
race detector may not (yet) exist.

The remainder of the paper is organized as follows: Section 2
discusses relevant work and concepts used in this paper. Section
3 describes our approach in more detail. Section 4 provides an
overview of our experimental results, while Section 5 looks at
selected programs in more detail and provides a better intuition
for the failure modes in our approach, followed by a conclusion in
Section 6.

2 Background
We briefly summarize dynamic data race detection, DataRaceBench,
and OpenMP and Go language features relevant to this work.

2.1 Dynamic data race detection
A data race can occur when two threads access the same memory
location concurrently without proper synchronization, and at least
one access is a write [20]. Data races can lead to nondeterministic
bugs that are notoriously hard to reproduce and debug. Dynamic
data race detection tools [2, 8, 11, 15, 21] monitor a particular pro-
gram execution to catch runtime conditions that cause data races in

a specific run, typically by analyzing an execution trace. In contrast
to static analysis approaches [3, 7, 16], dynamic detectors analyze
a concrete execution, which may miss data races not revealed by
that run, but tend to offer higher detection accuracy and fewer
false-positives. Most dynamic data race detections are based on
lockset-based, happens-before-based, or hybrid [17] techniques. A
technique worth mentioning in the context of this work is purely
LLM-based detection of data races [6], although this typically works
without actually executing the code, and is therefore more closely
related to static analysis than dynamic data race detection.

2.2 DataRaceBench
DataRaceBench [13] is a benchmark suite designed for evaluation
of data race detection tools. In version 1.4.0 it provides a collection
of 208 C programs and 168 Fortran programs that use a variety of
OpenMP features. Previously published comparisons of dynamic
data race detection tools in [13] are based on a subset of 166 Fortran
programs. Roughly half of the programs contain a data race, whose
nature and exact code location is contained as comments in the
source file. File names for programs with or without race end with
-yes and -no, respectively. We evaluate our approach based on
DataRaceBench’s most recent C, and most recent as well as older
versions of Fortran microbenchmarks.

2.3 OpenMP
We briefly summarize some OpenMP language features used in
DataRaceBench programs. For a more comprehensive and precise
description we refer to [18]. OpenMP allows programmers to con-
trol multi-threaded execution through the use of pragmas, such as
#pragma omp parallel, which creates a team of threads to exe-
cute the following region in parallel. Within a parallel region, the
work sharing construct #pragma omp for can be used for parallel
execution of loop iterations, while #pragma omp single specifies
that the following code block is executed by only one of the threads.
Variables are shared by default (with some exceptions, such as loop
counters of work sharing loops), meaning that there is one instance
accessible by all threads. Users can also privatize variables, for exam-
ple using private or firstprivate clauses, both of which result
in each thread having its own instance of this variable (the clauses
differ in the way private instances are initialized). OpenMP explicit
tasks (created via #pragma omp task) specify units of work that
can be run by threads asynchronously. OpenMP provides synchro-
nization mechanisms between tasks, including depend clauses to
specify data dependencies, and critical or taskwait directives.
OpenMP’s SIMD directive (#pragma omp simd) enables SIMD exe-
cution of loop iterations, for example using vector instructions.

In Listing 1, an excerpt from a DataRaceBench program that
contains a data race, a team of two threads is created on line 1 with
a parallel clause. Loop iterations are mapped to the two threads
(lines 3–6). Only one thread reaching the single clause (line 7)
continues while the other thread waits at the implicit barrier, but
is allowed to execute other tasks from the task queue. Inside the
single block, line 9 spawns a parent task, which spawns a child
task on line 11. Because taskwait on line 16 only waits for the
parent task, it does not wait for the child task on line 11. If the
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child task has not finished by the time line 17 executes, the read of
psum[1] races with the child’s write on line 12.

1 #pragma omp parallel num_threads(2)

2 {

3 #pragma omp for schedule(dynamic, 1)

4 for (int i=0; i < 4; ++i){

5 // ... code initializing `a`
6 }

7 #pragma omp single

8 {

9 #pragma omp task // parent task

10 {

11 #pragma omp task // child task

12 { psum[1] = a[2] + a[3]; }

13

14 psum[0] = a[0] + a[1];

15 }

16 #pragma omp taskwait // wait for parent task only

17 sum = psum[1] + psum[0]; // race on psum[1]

18 }

19 }

Listing 1: C/OpenMP program with a data race between lines
12 and 17, due to incorrect task synchronization. The code is
abbreviated from DRB117-taskwait-waitonlychild-orig-yes.c

2.4 Go
We summarize selected Go features that are commonly used by the
AI agent to implement the translated DataRaceBench programs.
Go expresses parallelism in the form of goroutines. A function f
(args) can be launched as a goroutine by writing the statement
go f(args). A goroutine can be understood as a lightweight task,
which is scheduled for execution by a thread pool that is managed
by the Go runtime environment. Due to their lightweight nature,
goroutines are in practice often spawned in numbers that far exceed
the available processor cores. For example, a parallel loop is often
expressed as a sequential loop in which each iteration spawns a new
goroutine, see lines 4-9 in Listing 2. Go provides an extensive library
of synchronization constructs in its sync package, including atomic
operations, locks, condition variables, semaphores, and barriers, all
of which are common in other parallel languages.

Additionally, Go providesWaitGroups. WaitGroups are barrier-
like objects, where the number of participating workers can be
dynamically adjusted using the Add(num int) method, see line 3.
A call to the Done() method signals arrival at the barrier, while a
call to Wait() prevents departure until the number of Done calls
is equal to the sum of the numbers passed into the preceding Add
calls, see lines 6 and 10.

Finally, Go programs commonly use channels to implement a
paradigm akin to message passing. A channel implements a FIFO
queue initialized to a fixed capacity (capacity is 1 if not explicitly
specified, see line 12). Sending a message to a channel c is expressed
as c<-; this operation blocks if the channel has no available capacity.
Receiving is expressed as <-c; this operation blocks until a message
is available to be received. Channels are often used to implement

synchronization between threads, for example in the form of a
boolean channel that is being sent to in line 17, and received from
in line 20, where the returned value is simply discarded.

1 var initWg sync.WaitGroup

2 initWg.Add(4)

3 for i := 0; i < 4; i++ {

4 go func(idx int) {

5 defer initWg.Done()

6 // ... code initializing `a`
7 }(i)

8 }

9 initWg.Wait()

10

11 parentDone := make(chan bool)

12 go func() { // parent

13 go func() { psum[1] = a[2] + a[3] }() // child

14 psum[0] = a[0] + a[1]

15 parentDone <- true

16 }()

17

18 <-parentDone // wait for parent only

19 sum = psum[1] + psum[0] // race on psum[1]

Listing 2: Go program, translated and parallelized by AI from
DRB117-taskwait-waitonlychild-orig-yes.c using idiomatic
Go features, containing the same error as the original C code

2.5 ThreadSanitizer and the Go race detector
ThreadSanitizer [21] is a widely used open-source (part of the LLVM
[12] andGCC [9] sanitizers) dynamic data race detector. ThreadSani-
tizer maintains a global state to record the observed synchronization
events and per-ID states to record information about each memory
location of the program. ThreadSanitizer instruments the program
to intercept memory access and synchronization events, and feeds
these events into a runtime state machine that updates global and
per-ID states in real time. By default, Archer is used to detect and
instrument OpenMP constructs, which improves the accuracy of
ThreadSanitizer in LLVM.We use ThreadSanitizer+Archer as a base-
line for comparisons in this work, and refer to this combination
simply as TSan.

The Go data race detector is part of the Go distribution, and
can be enabled using the -race command line argument during
compilation or when running a program directly from source code
without pre-compilation. The Go data race detector is based on
TSan, but well integrated and tailored to the Go language and
runtime environment. For example, it can detect races between
goroutines even if those goroutines are scheduled for execution on
the same thread by the Go runtime environment. The Go data race
detector is frequently used in large industrial applications [5].
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3 Approach
3.1 Translate-then-check
For the code translation from C or Fortran to Go, we used Cursor2
and selected the Claude 4 Sonnet model. At the time of writing,
this requires a paid plan. We also attempted to use the "Auto" mode,
available with a free plan, which internally selects a model in an
opaque way that can not be controlled or easily queried by the
user. Auto mode however resulted in poor translations that did not
capture the semantics of the original programs accurately, leading
to twice as many false positives and false negatives in preliminary
experiments. We therefore focus only on Claude 4 Sonnet.

We used prompts such as the following to initiate the translation:

For each file inmicro-benchmarks, create a translation
to the Go programming language and store the result
in the translated/c-to-go folder. Translate as faithfully
and closely as possible, without trying to make the
programming idiomatic to the Go language. Do not
attempt to fix bugs while translating.

In both the C and Fortran cases, the AI agent noticed the large
number of files and attempted unsuccessfully to create a script
to automate the translation, for example using the sed command
and regular expressions to replace certain patterns. In order to
force translation by the language model itself, we used additional
prompts, and eventually a .cursor file, which allows additional
prompts that always remain in context. Because Claude 4 Sonnet
is called as an agent through Cursor, it has access to all files in
the repository and is able to use terminal commands for debug-
ging. This was essential, for example, because some of the original
Fortran programs declare unused variables, which appeared in the
first versions of translated Go files. However, unused variables are
treated as an error by the Go compiler, which the language model
found when trying to compile and run the generated code. The
errors were automatically fixed by the model without user interven-
tion. It is thus not surprising that all translated programs compile
and run. This is even true for DRB071 and DRB152, where the
original Fortran programs contain, respectively, an uninitialized
variable that is used as array sizes, and an uninitialized lock. For
DRB071 the AI agent notices this, and arbitrarily chooses a size,
and generates the following Go code with comment:

1 length = 100 // Initialize length (was uninitialized

in Fortran - undefined behavior)

This behavior can be seen as a strength and weakness of our
approach, as will be discussed in more detail in Section 5, as the
translation is often useful, but not always faithful.

The translated files are executed with Go version 1.24.5, with
data race detector enabled. We use a script that calls each translated
program once for each configuration, using the environment vari-
able GOMAXPROCS to control the number of threads, using the same
set of thread counts used by the benchmark script in the original
DataRaceBench. We also use the GORACE="halt_on_error=1" en-
vironment variable to terminate execution as soon as a race is found.
We combine this with the timeout command from coreutils to

2https://cursor.com/home

limit the time spent on each program to 5 minutes. None of the
programs exceeded this time in our experiments.

3.2 Why not just ask an LLM?
Previous work [6] has discussed directly asking a language model
whether a given code contains a data race. Claude 4 Sonnet achieves
100% accuracy for this task on DataRaceBench. However, as one
might suspect, this is because the AI agent uses the file names and
comments as hints, as it openly admits in its answer.

I can determine this from the file names (which con-
tain "yes" or "no" to indicate race presence) and from
the comments in the files that specify the data race
pairs and line numbers.

For unknown codes, the ability of language models to reason about
their behavior and statically detect data races is still an open and
evolving question.

4 Experimental Evaluation
To guide our evaluation, we ask the following research questions:

• RQ1 Effectiveness of Translation-Based Detection. How ef-
fective is data race detection when applied directly to code
translated from C/Fortran to Go?

• RQ2 Effectiveness of Combined Analysis. To what extent does
a combined analysis of both native and translated code im-
prove detection performance?

4.1 Experimental Setup
Our experimental setup uses programs from the DataRaceBench
(DRB)[13, 14] suite version 1.4.0. We organized our evaluation
around 3 distinct configurations.

C/C++. : This configuration contains all 208 C/C++ programs
from DRB 1.4.0, serving as a baseline. We use LLVM 21 to repro-
duce experimental results. We construct instrumented programs by
compiling the source code with clang using (-fsanitize=thread),
along with along with -O3 -march=native optimization flags and
OpenMP support (using libomp).

F-old. : The F-old(or Fortran-old) configuration includes 142
Fortran programs from the original DRB paper’s Fortranmicrobench-
mark set that were successfully compiled with gfortran 13.3.0
linked against libomp and clang’s ThreadSanitizer runtime. This
setup deliberately excludes about 15% of the original DRB bench-
marks that use the !$omp target directive, as that feature is imple-
mented by gfortran using libgomp calls, which is incompatible
with clang-21’s libomp runtime.

F-new. : The F-new (or Fortran-new) configuration was cre-
ated to use an end-to-end pipeline based on flang[4], a new LLVM-
based production Fortran compiler. Since flang does not support
ThreadSanitizer flags natively, we first emit LLVM-IR using the
-emit-llvm flag. We then annotate all LLVM functions in the gener-
ated IR with the sanitize_thread attribute, followed by invoking
ThreadSanitizer directly on the generated IR using llvm-opt. This
configuration includes 133 supported Fortran programs.
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We also implemented Fortran fixes for uninitialized variables in
microbenchmarks DRB071 and DRB152 and use fixed microbench-
marks for evaluation.

As in DRB [13], we parametrize each benchmark by the number
of OpenMP threads from a list of (3, 36, 45, 72, 90, 180, 256), and
for var-length set, by array sizes from (32, 64, 128, 256, 512, 1024).
For each test configuration, we run the instrumented binary three
times. We report our experimental results in Table 2.

4.2 Evaluation Metrics
To evaluate the performance of each data race detection approach,
we reuse the 4 standard metrics from DRB: precision, recall, accu-
racy and F1 score. The mathematical formulas for these metrics are
defined in Table 1. Each metric provides a different insight into a
tool’s performance:

• Precision measures the fraction of reported data races that
are genuine. A tool with high precision is trustworthy, as
it minimizes the number of false positives (FP), saving time
from investigating phantom bugs.

• Recall measures the fraction of all existing data races that
the tool successfully identifies. High recall is critical for
effectiveness, since it indicates a low rate of false negatives
(FN) and ensures real bugs are not overlooked.

• F1 Score is a harmonic mean of Precision and Recall. It
provides a balanced measure of the tool’s performance, as
there is a tradeoff between catching every bug (high recall)
vs being sure every bug is real (high precision)

• Accuracymeasures the fraction of correct predictions across
all testcases.

4.3 RQ1: Translation Effectiveness
To answer this question, we evaluate the effectiveness of translating
C/C++ and Fortran code to Go and then using Go’s native race
detector. The evaluation results are presented in Table 2.

For C/C++ programs, the translation to Go proves to be highly
effective. As seen in Figure 1, the analysis of translated Go code
achieves a higher F1 Score(0.926) compared to the baseline analysis
using clang and TSan(0.892). This improvement is driven by an
increase in recall, indicating that Go’s data race detector is able to
detect more true data races.

For Fortran programs, the translated Go code results in lower
F1 scores than two baseline Fortran toolchains (F-old and F-new)
due to an increased number of false positives, as seen in Figure 2.
However, our approach uncovers more true data races than both
baseline Fortran toolchains, achieving substantially higher recall.

4.4 RQ2: Effectiveness of Combined Analysis
We investigate whether a combined analysis, aggregating reports
from the native tool and the Go race detector on translated code, can
yield better results. Our findings, summarized in Table 2, indicate
that a strategy that flags programs in which either tool reports a
race, is very effective. This is in part caused by the fact that there
is little overlap between the programs misclassified by the tools.

As seen in Figure 1, for C/C++ programs, the combined ap-
proach (Go ∧ C/C++) achieves a F1 score of 0.935, the highest of
any method. This is mainly achieved by maximizing recall while
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Figure 1: Data race detection performance for C/C++ with
OpenMP code translated to Go. We compare clang’s Thread-
Sanitizer based checker, Go’s builtin Data Race Detector and
a combined approach. The combined approach achieves the
highest F1 Score of 0.935.
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Figure 2: Data race detection performance for F-old programs
translated to Go. We compare DRB’s libomp based checker,
Go’s inbuilt Data Race Detector and a combined method. By
using results from both Go’s detector and TSan, the com-
bined approach achieves highest recall at the cost of reduced
precision.

maintaining high precision, indicating that the combined tools
capture more true positives than either tool can alone.

Similar benefits are observed for Fortran programs. As seen
in Figure 2 and Figure 3, for both the F-old and F-new sets, the
combined approach achieves the highest recall among all tested
configurations, in both cases at the cost of slightly lower precision.

5 Categorizing Translation Accuracy
Most programs appear to be translated faithfully, for example as
shown in Listings 1 and 2. We focus in this section on selected
programs for which our test-then-check approach resulted in false
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Table 1: Evaluation metrics used. Tool Result is True iff a data race is detected.

Tool Result Ground Truth Recall(𝑅) Specificity Precision(𝑃 ) Accuracy F1 ScoreTrue False

True TP FP 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑇𝑃 +𝑇𝑁
𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁

2 · (𝑃 · 𝑅)
𝑃 + 𝑅False FN TN

Table 2: Benchmark Results(evaluated on DataRaceBench[13, 14] configurations as described in Section 4.1)

Tool TP TN FP FN Accuracy Precision Specificity Recall F1 Score

C/C++ 87 100 4 17 0.899 0.956 0.961 0.837 0.892
Go (translated C) 95 98 6 9 0.928 0.941 0.942 0.913 0.926
Combined (Go ∧ C/C++) 100 94 10 4 0.933 0.909 0.904 0.962 0.935

F-old 60 65 4 13 0.880 0.938 0.942 0.822 0.876
Go (translated F-old) 65 48 21 8 0.796 0.756 0.696 0.890 0.818
Combined(Go ∧ F-old) 68 48 21 5 0.817 0.764 0.696 0.932 0.840

F-new 58 57 5 13 0.865 0.921 0.919 0.817 0.866
Go (translated F-new) 63 45 17 8 0.812 0.787 0.726 0.887 0.834
Combined(Go ∧ F-new) 64 45 17 7 0.820 0.790 0.726 0.901 0.842
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Figure 3: Data race detection performance for F-new pro-
grams translated to Go. We compare a flang + ThreadSan-
itizer based checker, Go’s inbuilt Data Race Detector and a
combined method. The combined method achieves an F1
score between the other approaches.

negatives or false positives, or where the result changed compared
with TSan. We broadly categorize these cases in the following sub-
sections. Note that comments are added for explanation in this
paper, except when we explicitly refer to a comment as being gen-
erated by the AI agent during translation.

5.1 Translation enables easier detection
SIMD vectorization can be difficult to analyze for dynamic race
detection tools. DataRaceBench contains 11 C programs with SIMD
that have a data race (DRBs 24, 25, 115, 138, 157, 161, 164, 202,
204, 206, 207), for which TSan reports 7 false negatives, which is
significantly below its overall accuracy across other DataRaceBench

programs. Go does not provide explicit means of using SIMD, in-
stead relying on the compiler to detect vectorizable loops. This
prevents detection of a race in DRB024-simdtruedep-orig-yes.c.

1 #pragma omp simd

2 for (i=0;i<len-1;i++)

3 a[i+1]=a[i]+b[i]; // race

The Go translation instead uses a parallel loop with the same data
race, which is detected. Note the green comments in the following
code snippet, which were generated by Claude during translation,
showing that the model was aware of the race in the source program
code and intentionally created a race in the target program.

1 // Simulating SIMD parallelization with goroutines

2 // This creates the same data race pattern as the

3 // original SIMD code

4 var wg sync.WaitGroup

5 for i = 0; i < length-1; i++ {

6 wg.Add(1)

7 go func(index int) {

8 defer wg.Done()

9 a[index+1] = a[index] + b[index] // race

10 }(i)

11 }

12 wg.Wait()

Surprisingly, the data race is eliminated in the Go translation of
the equivalent Fortran program by using a sequential loop. Again,
Claude documents this decision with a comment (shown in green)
and apparently did not intend to reproduce a race in the target
program.

1 // In Go, SIMD is handled by the compiler/runtime,

2 // we use regular loop
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3 for i = 1; i <= length-1; i++ {

4 // True dependence: a[i+1] depends on a[i]

5 a[i] = a[i-1] + b[i-1] // no race, mistranslation

6 }

The difference in translation from Fortran and C are a recurring
theme in our results. It is unclear to what extent this is simply
caused by the non-deterministic nature of language models and
could be overcome by repeated prompting for the same input pro-
grams, or whether differences in the amount of training data for C
versus Fortran or the different nature of those languages play a role.

5.2 Translation introduces new race
Our translate-then-check approach leads to a total of 6 false posi-
tives, all of them caused by mistranslation that inserted an actual
data race into the target program. This is interesting for two rea-
sons. One, unlike TSan, the Go data race detector itself did not
produce any false positives in our experiments, which is an indica-
tion of its maturity and tight integration with the language. Two,
the AI agent introduces data races even for translation tasks in
small, well-understood and previously seen programs such as those
in DataRaceBench, at a rate that may be unacceptable in situations
where the target programs are to be used on their own. On the
other hand, the rate of introduced data races (6 out of 207) is not
much higher than the rate of false positives reported by TSan on the
original programs (4 out of 207), which means that AI translation
may perform well enough for a test-then-check setting in practice.

The translated programs have data races for different reasons.
For DRB078-taskdep2-orig-no and DRB107-taskgroup-orig-no, the
Go programs correctly translate the bulk of the program, but use
a sleep timer instead of an actual barrier in a flawed attempt to
ensure that all goroutines finish their contribution before checking
the final result. For the same programs, DRB078 and DRB107, the
equivalent Fortran programs are translated correctly and use a
WaitGroup for synchronization before the final check. For DRB107,
the Fortran-to-Go translation instead introduces a new race by
essentially making the loop counter a shared variable.

1 for threadID := 0; threadID < numCPU; threadID++ {

2 go func() {

3 if threadID == 0 { // race

4 // ...

5 }

6 }() // should have passed threadID as argument here

7 }

This is because the loop counter is not passed as an argument to
the spawned goroutine – unlike, for example, in Listing 2 – and
instead becomes part of a closure. As a result, the loop in the main
function and all spawned goroutines share the same instance of
threadID, causing a race.

Other races are introduced because of OpenMP semantics that
are not understood by the translator. For example, DRB127-tasking-
threadprivate1-orig-no relies on the fact that two tasks either are
scheduled on the same thread, meaning that they cannot run con-
currently, or see different instances of a threadprivate variable,
avoiding a data race. This subtle behavior is not captured correctly

in the Go translation, where the tasks are implemented as gorou-
tines that are not guaranteed to be scheduled on the same thread.

A slightly less subtle problem occurs in DRB174-non-sibling-
taskdep-no, where the original program uses an OpenMP single
construct to ensure two tasks run on the same thread and can
therefore not race; the tasks are translated into Go routines, for
which no such guarantees exist.

Perhaps among the most confusing cases is DRB129-mergeable-
taskwait-orig-yes, a program that supposedly contains a race, but
in fact can merely behave in two different ways depending on
the implementation-defined choice of the OpenMP compiler and
runtime whether or not to merge a task that has been declared as
mergeable with its parent. Since the original program contains no
actual data race, TSan is correct in reporting no race but gets flagged
as false negative. The C-to-Go translation correctly reflects this
behavior, and models the implementation-defined choice as a coin
flip, where each option leads to a race-free execution. The Fortran-
to-Go translation introduces a new data race that is unrelated to
any of these subtle details. This race is detected in Go, leading to a
somewhat misleading “true positive” designation.

5.3 Translation eliminates existing race
For some programs (such as the aforementioned Fortran version
of DRB024-simdtruedep-orig-yes), the translation eliminates the
existing data race. This is particularly worrying in a translate-then-
check use case, because it increases the number of false negatives
and can lead to false confidence in the original programs.

For example, the DRB037-truedepseconddimension-orig-yes pro-
gram contains a nest of two loops. It would be safe to parallelize
the outer loop, which is not parallelized. Instead, the inner loop is
parallelized despite a true dependence, causing a detectable race
in the original program. The C-to-Go translation removes the race
by instead parallelizing the outer loop, leading to a false negative,
whereas the F-to-Go translation maintains the original paralleliza-
tion with data race, leading to a detected race.

Another interesting case, DRB142-acquirerelease-orig-yes, con-
tains a data race because it uses acquire and release atomics incor-
rectly. Go does not have those weaker forms of atomic operations,
and instead only offers sequentially consistent atomics. The original
race thus cannot be accurately translated to Go.

Finally, DRB177-fib-taskdep-yes contains a data race while com-
puting an expression that is stored in a variable that is never used
again, presumably due to a typo. The translation eliminates this
unnecessary expression and the race, and presumably a good opti-
mizing compiler might do the same for the original C program.

1 #pragma omp task shared(i) depend(out : i)

2 i = fib(n - 1);

3 #pragma omp task shared(j) depend(out : j)

4 j = fib(n - 2);

5 #pragma omp task shared(i, j) depend(in : j)

6 s = i + j; // race; i,j are used too early

7 #pragma omp taskwait

8 return i + j; // s should have been returned
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5.4 Detection differs between C and Go
For two programs, DRB013-nowait-orig-yes and DRB201-sync1-
yes, the translation appears to accurately reflect the race in the
original code, but the race detectors differ in their assessment. This
is a testament to the non-deterministic nature of those tools. In the
case of DRB013, TSan detects the race but Go does not. The original
program is very simple:

1 #pragma omp parallel shared(b, error)

2 {

3 #pragma omp for nowait

4 for(i = 0; i < len; i++)

5 a[i] = b + a[i]*5; // race

6

7 #pragma omp single

8 error = a[9] + 1; // race

9 }

The translated program has the same race, which is not detected
unless the constant 9 is replaced with a larger number close to len.

DRB201-sync1-yes contains two memory accesses, one of which
is not correctly guarded by a lock.

1 #pragma omp parallel num_threads(2)

2 {

3 if (tid == 0)

4 {

5 omp_set_lock(&l);

6 x = 0; // race

7 omp_unset_lock(&l);

8 }

9 else if (tid == 1)

10 {

11 omp_set_lock(&l);

12 omp_unset_lock(&l);

13 x = 1; // race, lock is no longer held

14 }

The translation contains the same error, and Go successfully detects
this in about 50% of our attempts.

6 Conclusion, Future Work
We investigated a translate-then-check approach that facilitates
detection of data races in a source program by means of large-
language-model (LLM)-based translation to a target language, fol-
lowed by the use of conventional data race detection tools in the
target language. Our experimental results, checking for races in
DataRaceBench bymeans of translation to the Go programming lan-
guage, show that translate-then-check can be competitive with state
of the art data race detection tools applied to their native language.
We argue that this approach is more reliable and explainable than
pure LLM-based data race detection, and that translate-then-check
presents an interesting use case of LLM-based language translation
in which a small number of errors is more tolerable than in lan-
guage translation tasks where the goal is to use the target programs
in production.

It is worth stressing that our approach still relies on conventional
data race detection tools in the target language, and we do not
propose replacing conventional tools with AI agents, nor do we
believe that our results allow a fair comparison between the race
detectors in Go and Clang or Flang, partly due to the limitations of
our experiments discussed earlier in the paper. Rather, the results
indicate that existing data race detection tools can be useful beyond
the languages and parallel frameworks for which they have been
originally developed, with the help of AI-based translation.

A number of avenues remain unexplored and should be ad-
dressed in future work. We manually prompted the model to trans-
late programs; it could be useful in practice to develop a data race
detection tool that internally and transparently to the user queries
a language model and applies a detector to the generated target
program.

Our work does not analyze source code lines involved in data
race pairs. While this is slightly more challenging due to the fact
that races are detected in translated programs, it is conceivable
that language models could be used to identify the original source
lines, either by directly asking for this information, or by asking the
translation model to include original source lines e.g. as comments
in the translated programs.

Future work should also explore a wider range of AI models as
well as prompts, for example by providing specific anti-patterns that
are frequently used in the target language to avoid the introduction
of new races during translation.

An even more interesting approach could be to involve an LLM-
based AI agent directly in the detection task, by asking it to use the
data race detection tool in the target language. If successful, this
could lead to an iterative approach in which the agent improves
the translation accuracy, and eventually fixes the data race in the
original source program.
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